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What Controls the Shallow Fault Damage Zone & Fluid Flo

Insights from New High-Resolution Seismic Imaging

Complex fault damage patterns
localize around active fault strand

How does fault displacement impact the
damage zone?

Obliquity influences damage zone width
Fault Likelihood Obliquity
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Top- Individual line curves for different fault sections. The light-weight lines repre-
sent the number of samples in the trace (3 m sampling) that exceeded 0.98 TFL. o o o o o
Fluid flow is influenced by fault damage and sediment thickness
Bottom- The median stack of each section where the heavy-weighted dark line
represents the median stack of all fault perpendicular lines. ] , ) :
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Schematic cross-section cartoon representing the fluid system surrounding the
Palos Verdes Fault.
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seismic (MCS) profile and with the thinned
fault likelihood (TFL) attribute results.

- | Data Examples

Chirp sub-bottom profile example. The white bars indicate the

Zoom in view of fault detectiosn
Around the Palos Verdes Fault
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Palos Verdes Fault (shown in purple)
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1. Import raw data
2. Calculate source - receiver geometry
3. QC stack data

i) Pick water bottoms

i) Semblance velocity analysis
4. Surface Related Multiple Elimination
5. Pre-stack statistical deconvolution
6. Normal moveout w/ velocity table
7. Trimstatics (flatten streamer)
8. Common midpoint stack
9. Post-stack migration
10. Top and bottom mute
11. Structurally oriented denoise
12. Export segy

®

a. Dip-steering - Filter size 7 x 128
b. Fault Enchancement Filter
c. Thinned Fault Likelihood
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Observables
Fault Locs
Seafloor Scarps
Seafloor Seeps
Fault Damage

Datasets
2021 USGS Chirp
2021 USGS MCS
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length and depth; note the extreme vertical exaggeration of the
profile to highlight the fault scarp and fluid seeps.

The Palos Verdes fault (red vertical line) clearly marked by a sharp
boundary between horizontally continuous Quaternary sediments
to the northeast and deformed Miocene lithologies to the south-
west.

Along the shelf, all profiles crossing the fault exhibit a notable
scarp at the fault location that helps determine activity.
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identifiable by offset reflectors, folding, and
near fault deformation features.

The TFL attribute is truncated to highlight
high fault likelihoods (TFL > 0.98) this
damage metric is used consistently used
throughout the study, and represent high
fault likelihood or dissimilarity in seismic
data.
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) Thinned fault likelihood (TFL) overlay
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