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Supplemental Material

Accurately characterizing 3D fault geometry is vital for improving our understanding of
earthquake behavior and informing the development of seismic hazardmodels. Despite
their importance, subsurface fault structures tend to be poorly constrained because of
limitations in observational data. Improvements to the seismic networks and earth-
quake detection algorithms have increased the precision and volume of earthquake cat-
alogs, which help illuminate detailed subsurface fault structure and provide the most
direct information available about fault geometries at depth. We present a Python
package to automate generating 3D fault geometries directly from hypocentral seismic-
ity patterns. This method begins with clustering events based on their spatial density,
identifying coherent patterns. Nearby clusters are then merged based on the similarity
of their orientations. We fit nonplanar surfaces using support vector regression to
balance surface accuracy with minimal deviations from planarity. The fault models
are output as quadrilateral meshes at user-defined resolution. In the process of gener-
ating the 3D fault surfaces, we compute the spatial density of seismicity around the
surface and the planarity as quantitative metrics of the model outputs.

As a proof of concept, we apply this approach to the San Andreas–Calaveras fault
junction region and the 2019 Ridgecrest earthquake sequence, both in California, which
contain complex subparallel faults well defined at the Earth’s surface and abundant
microseismicity. These case studies demonstrate the method’s ability to model complex
fault structures, including long continuous fault surfaces, crossing faults, variably dip-
ping segments, and subparallel faults. We test the method on both standard network
catalogs and double-difference relocated catalogs. We find that our seismicity-based
fault model results align with published 3D models that incorporate additional con-
straints and interpretations (Plesch et al., 2020; Aagaard and Hirakawa, 2021). This
workflow provides a low-user-input solution for estimating fault geometries at depth
from earthquake catalogs.

Introduction
The spatial distribution and magnitude of earthquakes depend
on 3D fault structure, yet it is rarely known in detail.
Earthquake hazard assessments rely on representations of fault
locations and areas (Field et al., 2014). Currently, the represen-
tations of faults, in many cases, are based on mapped surface
traces and have limited dip information. This presents a prob-
lem because natural faults are nonplanar, are multistranded,
and have variable dip both along strike and depth (Segall
and Pollard, 1980; Carena et al., 2002; Fletcher et al., 2016;
Ulrich et al., 2019; Chu et al., 2021; Alongi et al., 2022,

2024). Furthermore, faults are often geometrically complex,
featuring roughness, stepovers, and curvature (Willemse and
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Pollard, 2000; Candela et al., 2012; Candela and Brodsky, 2016)
that can play an essential role in earthquake nucleation, propa-
gation, and arrest (Poliakov et al., 2002; Wesnousky, 2006;
Lozos et al., 2011; Hatem et al., 2015; Cattania and Segall,
2021). Limited knowledge of 3D fault geometry restricts the
predictive capabilities of earthquake hazard models and high-
lights the need for improved methods that can estimate fault
geometry at depth.

Existing methods
The importance of 3D fault models has driven efforts such as
the Statewide California Earthquake Center’s Community
Fault Model (CFM), which uses data that include surface
traces, hypocentral distributions, well penetrations, seismic
reflection profiles, and geologic cross sections to build 3D fault
surfaces (Plesch et al., 2007). However, these data-intensive
models are often limited to well-studied regions such as
southern California and require interpretive expertise. In less
well-studied areas, seismicity trends can provide a uniform and
data-driven alternative for identifying faults at depth.

Previous studies have explored variousmethods for determin-
ing 3D fault orientations from seismicity. Ouillon et al. (2008)
laid the groundwork for this using clustering and principal com-
ponent analysis to define planes. Subsequent work introduced
Gaussian mixture models, probabilistic clustering, and Bayesian
information criterion to improve fault detection accuracy (Wang
et al., 2013). Other studies have incorporated stochastic plane-
fitting approaches to overcome shortcomings inherent to regres-
sion (e.g., L1- and L2-norm fits) as a way to better represent
faults (Kaven and Pollard, 2013; Skoumal et al., 2019). Other
work has used Monte Carlo simulations to account for hypocen-
tral uncertainty and focal mechanisms to assess fault orientation
reliability (Truttmann et al., 2023). Recently, the normal vectors
of the nearest-neighbor events have been included in the cluster-
ing step (Sawaki et al., 2025) as well as strain-rate-based fault
reconstructions (Jourdon et al., 2025). Although these methods
have advanced fault characterization, they produce numerous
small, disconnected planes, limiting their ability to capture larger,
more continuous structures. Importantly, to our knowledge,
existing methodologies assume planarity, preventing them from
accurately representing the nonplanarity of typical fault surfaces.
Our method directly addresses these limitations by building
larger faults from small clusters of seismicity and applying a flex-
ible nonplanar surface fitting technique.

Fault zones
Although nonplanar surfaces improve the representation of
faults, it remains important to evaluate whether the modeled
surfaces conform to what is known about fault zone structure.
Fault zones are recognized as volumes of inelastic deformation,
recorded both geologically—through features such as secondary
fractures, cracks, and deformation bands—and geophysically via
observations of rock properties and seismic velocity structure at

depth (Caine et al., 1996; Fialko, 2004; Li et al., 2004; Chester
et al., 2005; Cochran et al., 2009; Choi et al., 2016; Alaei and
Torabi, 2017; Scott et al., 2018; Antoine et al., 2021;
Atterholt et al., 2022; Cocco et al., 2023). A consistent observa-
tion across studies is that the intensity of deformation, often
approximated by fracture density or seismicity, tends to decay
with distance from the principal slip zone (Shipton and Cowie,
2001; Berg and Skar, 2005; Faulkner et al., 2010; Powers and
Jordan, 2010; Savage and Brodsky, 2011; Perrin et al., 2021;
Alongi et al., 2022, 2024; Rodriguez Padilla, Oskin, et al.,
2022). These patterns have been described using exponential
or power law functions and provide a quantitative framework
for assessing off-fault deformation. In this study, we use the
decay of seismicity density with distance from a modeled fault
surface as a proxy for deformation localization, enabling an
appraisal of how well our surface-fitting method reproduces
known fault zone characteristics.

This study
Many previous efforts to generate 3D fault representations
have largely concentrated on improving clustering techniques
and addressing hypocentral aleatory uncertainty. Here, we
introduce the Seismicity Utilized for Reconstructing Faults
(SURF) algorithm (Alongi and Skoumal, 2025) (see Data
and Resources) for determining fault geometries from seismic-
ity patterns. We build on prior work (Ouillon et al., 2008;
Kaven and Pollard, 2013; Wang et al., 2013; Skoumal et al.,
2019), introducing a low-user-input approach to estimate fault
geometries from seismicity patterns. Our method focuses on
generating fault surfaces from numerous small, nearly coplanar
clusters, which are then merged based on nearest-neighbor
coplanarity. This approach allows us to model faults that
are spatially continuous with variable geometry over large dis-
tances. We fit 3D nonplanar, semiparametric surfaces to the
data, and the events near the modeled surface do not impact
the misfit and effectively account for a finite damage zone
width and location uncertainty. The result is a set of nonplanar
fault geometries generated from seismicity patterns and requir-
ing minimal user input. The detailed fault geometries and loca-
tions can be used to model rupture scenarios and may
contribute to improving hazard assessments in both well-stud-
ied and underresearched regions.

Methods
The SURF algorithm is designed to build on and overcome the
limitations of previous methods (Ouillon et al., 2008; Kaven
and Pollard, 2013; Wang et al., 2013; Skoumal et al., 2019),
which produce numerous small and purely planar fault surfa-
ces. Inspired by traditional mapping approaches, our method
identifies clusters of seismicity based on spatial density and
merges nearby clusters with similar orientations to create
longer and more continuous faults. Unlike prior techniques
that simplify fault geometries as planes, our approach
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independently fits each cluster with a nonplanar surface,
allowing for more realistic fault geometries without imposing
prior assumptions about their shape (Fig. 1).

Density-based clustering
The first step is to generate a spatial framework to build the
faults around that is tied to active structures that are identified
by where seismicity is spatially localized and clustered. To
identify clusters, we use the hierarchical density-based spatial
clustering of applications with noise (HDBSCAN) algorithm
(Campello et al., 2013) from the scikit-learn Python package
(Pedregosa et al., 2011). HDBSCAN is chosen for its ability
to identify diverse, fault-like shapes, and it requires only
one parameter, the minimum number of events to be consid-
ered a unique cluster. We find that setting the minimum clus-
ter size to between 20 and 40 events ensures that clusters can be
oriented while remaining small enough to merge in the next
step. Note that clusters typically contain many more events
than the minimum number, and this depends on the dataset.
In our tests, the median number of events per cluster in is typ-
ically around 70–90.

Cluster merging
To extend fault lengths, we merge clusters with similar
orientation that are nearly coplanar. Refer to Figure 1 for a
schematic of the following steps.

Orientation assessment. To assess the coplanarity of clus-
ters, we determine their orientations using a planar approxi-
mation. Here, we use a 3D implementation of the random
sampling consensus algorithm (Fischler and Bolles, 1981).
This stochastic method iteratively selects three earthquake
hypocenters to create two vectors and compute their cross

Figure 1. Schematic illustrating the key aspects of the seismicity
utilized for reconstructing faults (SURF) algorithm. (a) The earth-
quake cluster merging process. First, each initial cluster (indicated
by color) is fit with a plane using random sampling consensus to
determine its normal vector ~ni. Next, the k, nearest-neighbor
clusters (k = 3 in this example) are identified, and the direction
vector ~rik to the kth cluster is calculated. Finally, normal vectors
and direction vectors are used to construct the measurement
matrix M (from equation 3), which quantifies the coplanarity of
neighboring clusters and informs the merging process; see the
main text for more details. (b) An illustration to help build intuition
about the support vector regression (SVR) parameters C and ϵ . C
describes how nonplanar the modeled fault surface is, with higher
values indicating greater nonplanarity. Here, ϵ describes the length
scale near the surface where points do not impact the fit. (c) A
schematic to build intuition about the quality indicator parameters
in equation (4). The equation fits a modified power law to the
earthquake density as a function of distance from the fault surface
(in log space). The color version of this figure is available only in the
electronic edition.
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product, providing trial plane-normal vectors. Next, to assess
which iteration provides the best fit, points are classified as
inliers or outliers based on the distance from the trial plane. In
this study, we use a distance threshold of 500 m, which is a
typical absolute hypocentral depth uncertainty in California
(typically greater than the horizontal location uncertainty)
(Thurber et al., 2003). The iteration with the greatest number
of inliers is selected as the best fit. These best-fit orientations
and the direction vectors to its nearest neighbors (calculated
using k-dimensional [KD] tree; Bentley, 1975) provide a mea-
sure of coplanarity.

Coplanarity determination. To quantitatively assess
coplanarity, we use the cluster’s nearest-neighbor’s normal
vectors and direction vectors to calculate the following:

~N � ~ni · ~njk, �1�

~D � ~ni · ~rjk: �2�

Here, ~N is the scalar dot product of the normal vector for the
ith cluster with the normal vector j of k nearest neighbors. The

value of ~N describes how similar the orientations of each clus-

ter are with its nearest neighbors. ~D is the scalar dot product of
the ith normal vector with the direction vector to k nearest
neighbors; this quantity describes the coplanarity of pairs of
clusters. Combining equations (1) and (2) provides a measure
of coplanarity given by

M � j ~Nj × �1 − j~Dj�, �3�

M ranges from 0 to 1, in which a value of 1 means that the pair
i, k clusters are coplanar and 0 indicates that clusters are
orthogonal, are on an adjacent parallel feature, or a combina-
tion of the two. We put a threshold on M to determine which
clusters to combine. Clusters that do not meet the threshold are
retained but are neither discussed nor displayed in this study.

Surface fitting
After merging clusters, we again use scikit-learn (Pedregosa
et al., 2011), this time to fit nonparametric surfaces to the data
using support vector regression (SVR), a machine learning
method based on support vector machines (SVMs) (Smola
and Schölkopf, 2004; Bishop and Nasrabadi, 2006). Originally
developed for classification, SVMs identify optimal decision
boundaries by maximizing the margin between data classes.
SVR extends this approach to regression tasks, predicting con-
tinuous values from inputs while allowing a margin of tolerance
epsilon (ϵ ) around the true values. The goal is to find a function
that is as flat as possible while allowing deviations from the data
within a specified distance ϵ and points outside this margin are

penalized. The trade-off between flatness and tolerance for
deviation is controlled by the parameter C. A small ϵ allows
tighter fits to the data, whereas a larger C permits more complex
surfaces that better capture outliers at the cost of smoothness.

We chose SVR for several reasons. It is nonparametric,
meaning the surface is not restricted to a predefined shape
and is instead guided directly by the data, avoiding assumptions
about fault geometry. In addition, SVR’s objective of maximiz-
ing flatness leads to smooth and simple surfaces that reflect the
minimum complexity required to fit the data. During fitting,
earthquakes that fall within the distance ϵ do not affect the
regression, reducing sensitivity to location uncertainty and to
diffuse seismicity within the broader damage zone. Moreover,
the parameters C and ϵ can be selected through cross valida-
tion—a procedure in which the data are partitioned into training
and validation sets to identify the values that generalize best to
unseen data—minimizing the need for user tuning and reducing
the risk of overfitting. Finally, the resulting surface can be dis-
cretized at any desired resolution and extrapolated beyond the
data, making it a flexible tool for modeling fault geometry.

Model interpretation and hypocentral
distributions
To help interpret the SURF algorithm’s outputs, we measure
the distribution of seismicity around the modeled fault surfa-
ces. Measuring the hypocentral event density as a function of
distance from the modeled surface may provide insights into
the suitability or appropriateness of representing a volume of
seismicity as a discrete fault surface. Specifically, we fit the dis-
tributions of seismicity around the modeled surfaces with a
modified inverse power law relationship used in previous stud-
ies (Powers and Jordan, 2010; Perrin et al., 2021; Rodriguez
Padilla, Oskin, et al., 2022; Rodriguez Padilla and Oskin,
2023). For each fault surface, we fit the equation first intro-
duced in Powers and Jordan (2010) given by

ν�x� � νo

�
dm

jxjm � dm

� γ
m

: �4�

Following Rodriguez Padilla, Oskin, et al. (2022), we use log-
arithmically spaced bins for x, in which ν�x� is the number of
earthquakes in each bin, normalized by the bin width. The
parameter d represents the distance from the fault where
the inverse power law applies. The parameter m, controlling
the sharpness of the distribution’s corner at d, is set to 2, which
is consistent with previous studies (Powers and Jordan, 2010;
Rodriguez Padilla, Oskin, et al., 2022). The power law expo-
nent gamma (γ) describes the nonlinear decrease in event den-
sity with increasing distance from the fault to build some
intuition (see the illustration in Figure 1). We fit equation (4)
using maximum-likelihood estimation (MLE), assuming that
ν�x� follows a Poisson distribution (Boettcher and Jordan,
2004; Powers and Jordan, 2010).
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We evaluate the goodness of fit using mean relative error
(MRE), which normalizes the misfit at each point by its
estimated value,

MRE � 1
n

XN
i�1

jνobs,i − νfit,ij
νfit,i

, �5�

in which νobs represents the data and νfit is the MLE fit of the
power law to the data. This provides a quantitative measure of
the fit quality and is one component in discrimination between
modeled faults with seismicity patterns that adhere to the
power law scaling from those that do not. In addition to using
the error in the fit to assess the modeled fault quality, we com-
pare the parameters of the fit γ and d with what has been doc-
umented previously. Furthermore, we use the parameter C and
ϵ from the SVR fit to provide information about the modeled
surface as additional way to assess the quality. For more details
about how modeled faults may be assessed, please refer to the
Interpretation and evaluation section.

Results and Discussion
We applied the SURF algorithm to two different locations in
California to test the robustness and versatility of our method.
We find that the algorithm successfully identified long and
continuous plate-boundary faults where epicenters are closely
aligned with mapped surface traces. In addition, we find that
documented subparallel fault strands are identified with the
algorithm. The modeled results also feature several previously
undocumented smaller secondary and variably oriented faults
that are delineated by the seismicity patterns at depth.

San Juan Bautista, California
Our first test case focuses on the region south of the San
Francisco Bay Area near the San Andreas fault (SAF) and
Calaveras fault (CF) junction (Fig. 2). These two major faults
creep variably within the bounds of the study region (e.g.,
Lienkaemper et al., 2014). Two other faults are documented
as active within the past 15,000 yr in the U.S. Geological
Survey (USGS) Quaternary Fault and Fold Database (see
Data and Resources), the Sargent fault and the Quien Sabe
fault, and have seismicity associated with them (Fig. 2).
This location features abundant well-located seismicity, and
we used ∼80,000 double-difference relocated hypocenters over
1984–2021 the time period provided by the Waldhauser and
Schaff (2021) catalog. (The geographic boundary encloses
about 10% of the total catalog.)

Running the catalog through the SURF workflow, described
in the Methods section, we set the minimum cluster size to 40,
which results in 357 unique clusters. We then merge clusters by
comparing the plane orientation and directions to nine nearest
neighbors using equation (3) and merging clusters that have an
M value >0.75. This orientation merging step results in 13 con-
solidated clusters that are displayed as red surfaces in Figure 2

and Video S1, available in the supplemental material to this
article. Only 34 of the initial clusters were not coplanar with
their nearest neighbors and therefore not merged or shown.

Comparisons. SURF successfully identifies the four faults
that have been active within the past 15,000 yr, each of which
has 3D representations in two existing fault models. One
model is the USGS’s Bay Area Velocity Model (BAVM)
(Aagaard and Hirakawa, 2021), which features detailed 3D
faults created by integrating surface geology, seismicity, and
gravity data. This model serves as the basis for the current iter-
ation of the Statewide California Earthquake Center’s (SCEC)
CFM 7.0 (Plesch et al., 2007). The second model is the third
Uniform California Earthquake Rupture Forecast (UCERF3),
which provides simplified representations of USGS quaternary
fault trace points that are extruded to depth at fixed dip and dip
direction (Field et al., 2014). Although UCERF3 offers general
agreement with our findings, its level of detail is lower than
that of the BAVM/CFM.

We evaluate the consistency between our modeled fault sur-
faces and the CFM because it provides a comparable level of
detail and a meaningful basis for evaluation. To accomplish
this comparison, we resample the SAF and CF modeled fault
surfaces from this study at 50 m increments. We apply the
same gridding process to the CFM’s CF and the composite
San Andreas sections “Creeping,” “Loma Prieta,” and
“Southern Peninsula.” We then calculate the distance between
points on our modeled fault surface and the points on the
existing fault model. These distances are then binned, and
we subsequently fit using the equation

N � κ10−x=x0 , �6�

in which x is the interfault distance, x0 is the decay distance
that characterizes the distribution, and κ is a constant that
is related to the count at the fault location. The decay distance
x0 represents the characteristic length scale over which the
counts decrease, such that ∼90% of all points are less than
x0 from the fault. Figure 3 highlights the distribution of dis-
tances between these results and SCEC CFM. What stands
out is that our results closely match those generated by the
SCEC CFM experts, even though we rely solely on seismicity.
These figures show the distribution of distances between our
results and the CFM’s SAF and CF. In both cases, the models
agree within 1 km, a value substantially lower than what might
be expected given the lack of shallow (<4 km depth) seismic
constraints.

Ridgecrest, California
Our next test case focuses on the 2019 Ridgecrest earthquake
sequence, which included anMw 6.4 earthquake followed by an
Mw 7.1 event that occurred the next day. Previous studies have
generated relocated earthquake catalogs that have informed
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detailed interpretations of fault geometries at depth. A unique
aspect of this sequence is the near-orthogonal orientation of
the activated fault structures (Liu et al., 2019; DuRoss et al.,
2020; Pollitz et al., 2020; Fialko and Jin, 2021; Nevitt et al.,
2023), which poses challenges for distinguishing intersecting
faults using focal mechanisms because the nodal planes are also
orthogonal. The spatial distribution of aftershock hypocenters
also reflects orthogonal features (Ross et al., 2019; Lomax,
2020; Shelly, 2020b).

For this study, we use the double-difference relocated earth-
quake catalog by Shelly (2020a), which includes the foreshock
sequence and the first 10+ days of the aftershocks following the
M 7.1 mainshock. This catalog was generated using ∼13,500
cataloged events as waveform templates, detecting and locating
>34,000 events that provide insight into this complex fault
system. We apply the SURF algorithm to the catalog and
use similar parameters as those in the San Juan Bautista
example. However, in this case, we set the minimum cluster
size to 35, resulting in 100 unique clusters. These initial clusters
are then combined and merged by comparing orientations and
direction to the five nearest neighbors as described by equa-
tion (3). Clusters with M >0.75 were merged. This process
resulted in 15 merged clusters; 34 remain unmerged. The
merged results are then fit and are displayed as a warm color
map (indicating depth) in Figure 4a and red surfaces in
Figure 4b,c.

Comparison. The resulting fault model shown in Figure 4a
demonstrates general agreement with the surface rupture
trace locations from DuRoss et al. (2020). The modeled fault
surfaces that correspond to the foreshock surface rupture
traces (southwest section in Fig. 4a) exhibit steep and variable
dips. In this region, the modeled faults highlight the method’s

Figure 2. 3D rendering of the modeled fault surfaces in the San
Juan Bautista region, California. The red surfaces represent
modeled faults, and the black lines indicate the U. S. Geological
Survey’s Quaternary Fault and Fold Database, where the labeled
fault zones are active in the latest Quaternary (<15,000 yr) and
are included as fault sources in U.S. National Seismic Hazard
Model (Petersen et al., 2024). The black dots mark epicentral
locations used to develop the fault planes. Towns mentioned in
the main text, San Juan Bautista (SJB) and Hollister (H), are
denoted with yellow and orange, respectively. (a) Map view of
fault surfaces, where the semitransparent base map is overlain to
highlight the agreement between modeled faults and the
location of the mapped surface traces. The inset map shows the
study region in California. The blue eye indicates the viewing
direction for (b). (b) An oblique cutaway view looking northwest
with 4× vertical exaggeration (VE) to highlight the geometry of
the San Andreas fault. See Video S1 for a rotating animation of
this model, which provides a complete 360° perspective on fault
geometry and seismicity. The color version of this figure is
available only in the electronic edition.
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ability to delineate subparallel faults, as illustrated in
Figure 4b and Video S2. Further evidence of these subparallel
fault delineations can also be seen in the southeasternmost
extent of the mainshock rupture, where modeled faults are
offset from the surface mapping by 1–2 km. In addition,
it is notable that the modeled fault of the mainshock is not
continuous at the intersection with the foreshock, as can be
seen in Figure 4b.

The most significant deviation in the fault model compared
to previous mapping efforts (DuRoss et al., 2020; Hudnut et al.,
2020; Pierce et al., 2020; Rodriguez Padilla, Quintana, et al.,
2022; Young et al., 2024) occurs at the northwestern tip of
the mainshock rupture near the Coso volcanic field. In our
model, the fault is characterized by a shallow dip to the south-
east, contrasting with the steeply dipping horsetail-like features
mapped at the surface in previous studies. This discrepancy
may stem from fitting a continuous surface through a diffuse
cloud of seismicity that lacks indications of fault network struc-
ture. Although the horsetail-like lineations are difficult to dis-
tinguish visually at depth, focal mechanisms suggesting vertical
strike-slip features are abundant (Plesch et al., 2020; Wang and
Zhan, 2020; Fialko, 2021). Further discussion of the distribu-
tion of seismicity and the modeled fault results is provided in
the Interpretation and evaluation section.

Interpretation and evaluation
We present SURF, a method for semiautomated 3D mapping
based on hypocentral locations. The two test cases described
in the Results and Discussion sections demonstrate the potential
for applying this method in regions with existing 3D fault mod-
els and in areas where such models are lacking. These results
raise several fundamental questions: (1)What are the limitations
of using this novel yet simplistic approach? (2) How will
the method perform in regions without relocated catalogs?
(3) When is it appropriate to fit a plane through a diffuse cloud

Figure 3. Comparison of the modeled fault surfaces from this
study with the Statewide California Earthquake Center’s
Community Fault Model (CFM) v.7.0 (Plesch et al., 2007), which
approximates the Bay Area Velocity Model’s fault surfaces
(Aagaard and Hirakawa, 2021). Both datasets were resampled to
a uniform 50 m node spacing, and the minimum distance
between the faults was calculated. (a,b) Results for the San
Andreas fault. (c,d) Results for the Calaveras fault. (a,c) The
modeled fault result rendered, where the faults are colored from
purple to yellow, indicating the distance between the modeled
result and the CFM. (b,d) The distribution of interfault distances
these results versus CFM and fit with exponential from equa-
tion (6) in which x0 indicates the decay distance. The color version
of this figure is available only in the electronic edition.

Volume XX • Number XX • – 2025 • www.srl-online.org Seismological Research Letters 7

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220250126/7360190/srl-2025126.1.pdf
by Bureau of Land Management - Denver, Travis Alongi 
on 08 October 2025



of seismicity? (4) What are our suggested best practices for
implementation, and what do the model outputs mean? All
of these questions are explored in the following subsections.

Limitations. The SURF algorithm proposed in this study
takes a simplistic and flexible approach to modeling 3D
faults. To minimize user-defined parameter choices, the code
does not impose strict assumptions about the distances that
nearest-neighbor clusters should or should not be merged.
However, this could be problematic if clusters are farther apart
than the user would like to allow merging to occur. In such
scenarios, the clusters must be coplanar and have similar ori-
entations. Although our tests have not encountered issues, we
acknowledge that the current approach could produce unreal-
istic results in some scenarios. If needed, adding a distance
cutoff parameter would be a straightforward modification.

Themodel outcomes are inherently dependent on the density
and accuracy of the input earthquake catalog in the region of
interest. Reliable results cannot be obtained in areas with sparse
seismicity or where the events lack a discernible trend. Both case
studies presented here have abundant relocated seismicity where
near-linear trends are observable. We find that in some cases,
modeled surfaces extrapolated to Earth’s surface align with
the mapped surface traces, but others do not (Figs. 2 and 4).
For example, the modeled SAF surface near San Juan
Bautista (SJB) is offset from the surface trace by up to 2 km,
whereas farther south, in the creeping section, the discrepancy
is reduced to a few hundred meters. Notably, these deviations
persist across all tested earthquake catalogs, including
double-difference, standard-network, and double-difference
tomographic results (Zhang and Thurber, 2006). This suggests

that variable offset of seismicity from the surface trace is a fea-
ture of the earthquake catalog rather than an error in the
method. One possible explanation is an abrupt change in dip
near Earth’s surface (Fig. 2). Alternatively, the offsets may stem
from errors in the absolute locations, an issue that is debated in
the literature (e.g., Thurber et al., 1997; McGuire and Ben-Zion,
2005; Zaliapin and Ben-Zion, 2011). The CFM features the same
offset of the fault at depth as in our results, but the fault is con-
structed to connect to the surface trace. This requires that the
CFM here feature a slightly shallower dip than our results, as
well as a shallowing of the dip of the fault near the surface.

Network versus relocated catalogs. The results from the
test cases presented in this study use double-difference catalogs
from highly instrumented regions of California. Although this
represents an ideal scenario, it raises the question: how do the

Figure 4. 3D fault model for the 2019 Ridgecrest earthquake
sequences. The modeled fault surfaces from this study are shown
in 3D renderings. The purple lines represent surface traces
mapped by DuRoss et al. (2020). (a) Map view of the fault
surfaces, colored by depth (yellow indicates shallow, and red
indicates deep). The light blue eye icons indicate view directions
for (panels b and c) and labeled accordingly. (b) Southern region
of the sequence, showing the Mw 6.4 foreshock and near-
orthogonal surfaces with subparallel strands extending to depth.
(c) Northern region near the Coso volcanic field, where the fault
model diverges from the existing model. No VE is applied to any
3D renderings. See Video S2 for a rotating animation of this
model, which provides a complete 360° perspective on fault
geometry and seismicity The color version of this figure is
available only in the electronic edition.
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results change when a routine network catalog is used that has
not been relocated? To address this, we modeled the fault sys-
tem near SJB (discussed in San Juan Bautista, California) using
the standard Northern California Earthquake Data Center’s
Northern California Seismic System catalog, which covers
the same coordinates and time frame (1984–2021) as the dou-
ble-difference catalog results discussed in San Juan Bautista,
California. These two different datasets (double difference
and network) have relative errors that vary by roughly an order
of magnitude, tens of meters for the double-difference versus
hundreds of meters for the network catalog (em ≈ rmset · vavg),
in which rmse is root mean square error; see Figure S1 for the
error distributions. For a visual comparison of the algorithm’s
results for the different datasets, refer to Figure 5 and Video S3.
Qualitatively, the general model outputs for the double-differ-
ence catalog and the network catalog are somewhat consistent;
however, there are second-order differences. We find that
model results corresponding to the location of the SAF and
Sargent fault are very similar for both network and relocated
catalog results. However, results diverge near the SAF and CF
junction, close to SJB and Hollister. Here, the network catalog
yields a greater number and more complex fault shapes and
morphologies that we attribute to the diffuse distribution of
hypocenters. In addition, the network results for the CF are
more nonplanar and have more intersecting faults than the
double-difference results. These features of the CF have not
been documented in other studies. In our interpretation, the
double-difference catalog results better agree with existing
models and are more physically realistic. When double-differ-
ent catalogs are available, they will likely produce the best
results, which is an intuitive result given the structural clarity
that more precise hypocentral locations generally provide.

Quality assessment, diffuse seismicity, and
interpretation. A key challenge in fault modeling is deter-
mining when a surface approximately represents the underlying
seismicity. In both the SJB and Ridgecrest examples, we observe
regions where seismicity is broadly distributed and lacks indica-
tors of continuous throughgoing fault structures. These regions
include the SAF–CF junction near SJB, where seismicity is dif-
fused and the algorithm generates variably oriented surfaces
(Fig. 2), and the northwestern tip of the Ridgecrest mainshock
rupture, near Coso volcanic field, where seismicity is confined to
a narrow depth range but lacks clear fault structure (Fig. 4).
These examples highlight the fundamental questions of when
is it justifiable to fit planes or surfaces through diffuse clouds
of seismicity, and how should model results be interpreted?

One approach for assessing model quality is comparing the
spatial distribution of seismicity around the modeled fault

Figure 5. Fault model results for the San Juan Bautista region of
central California. The orange surfaces and spheres are the model
results using “network” catalog using Northern California
Earthquake Data Center’s (NCEDC’s) Northern California Seismic
System (1984–2021). The blue surfaces and spheres are the results
using the “relocated” double-differenced catalog during the same
timeframe (Waldhauser and Schaff, 2021). Note that these surfaces
are the same as what is shown in Figure 2. (a) The region of interest
where the relocated and network catalogs broadly agree along the
San Andreas and Quien Sabe faults. (b) A zoom in of the junction
region of the highlighting how Calaveras and Sargent faults
(labeled) where the model results differ; the network results include
rougher surfaces and some results that may be erroneous. See
Video S3 for a rotating animation of this model, which provides a
complete 360° perspective on fault geometry and seismicity. The
color version of this figure is available only in the electronic edition.
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surfaces to the known tendency
for the number of earthquakes
to decrease as a function of dis-
tance from the fault in an
inverse power law relationship
(introduction). By fitting equa-
tion (4) to the observed hypo-
central distribution around the
modeled fault surfaces and
evaluating the misfit using the
MRE (equation 5), we identify
regions where the distribution
of seismicity aligns well with
the modeled faults.

Faults such as the San
Andreas, Quien Sabe, and por-
tions of the CF exhibit lowMRE
misfit (<0.5), indicating that the
seismicity distribution follows
the expected power law decay.
However, in regions with dif-
fuse seismicity, the power law
deteriorates, suggesting that a
single fault surface may not
fully capture the underlying
fault structure (Figs. S2 and S3).

Interpreting fit parameters
d and γ in power law
distributions. Beyond over-
all misfit, the fit parameters d
and γ in equation (4) offer
additional insight into how
well the modeled fault surfaces
represent seismicity. The
parameter d, which defines
the characteristic corner in
the power law distribution of
earthquake density with dis-
tance, can be particularly
informative when also consid-
ering hypocentral location
uncertainty. In the SJB dou-
ble-difference catalog, location
uncertainties are lognormally
distributed and range from
≈5 to 50 m (Fig. S1). In this
study, where the fits for d sig-
nificantly exceed the location
uncertainty (Figs. S2 and S3),
it may indicate real unmodeled
fault complexity or orientation
misfit, as shown in Figure 6b,c.

Figure 6. Impact of misfit and unmodeled complexity on the corner d and slope γ on the power law
relationship equation (4). The points (green circles) are distributed in an idealized pattern around the
fault, with lateral distances following a power-law distribution from a central line, and positions along
the fault length and depth following a Gaussian distribution. (a) The figure shows how earthquake
location uncertainty impacts the power law distribution. (b) The impact on the power law relationship
when modifying the dip of the reference measured surface while holding the points fixed and
measuring distances to the rotated reference surface. (c) The effect of unmodeled surface roughness
modeled by superimposing a sine wave to the prescribed distribution of points and then measuring
the distances with respect to the original planar fit. (d–f) Schematics illustrating the synthetic per-
turbations that are plotted to the left. Note that examples feature a similar result of moving the
corner of the power law farther from the fault with increasing unaccounted for fault complexity or fit
errors. The color version of this figure is available only in the electronic edition.
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Previous studies have proposed a link between d and hypocen-
tral uncertainty in power law observations (Goebel et al., 2014;
Rodriguez Padilla and Oskin, 2023). However, our analysis
finds little to no correlation between the mean hypocentral
location uncertainty and the parameters discussed in this sub-
section (Fig. S4), reinforcing the idea that dmay capture struc-
tural complexity beyond location errors.

To further explore the interpretation of d, we conducted
synthetic tests simulating fault-like seismicity distributions
while systematically perturbing the fault geometry. In these
simulations, we generate a simplified 1D linear and vertical
strike-slip fault by distributing points (representing hypocen-
ters) along its length with a Gaussian depth profile, a reason-
able assumption for California (Fig. S5). We then prescribe an
idealized power law decay of distances from the line, after
which we introduced controlled geometric perturbations.
To model fault misfit, we incrementally rotate the line. To
model surface roughness, we superimpose a sine wave on
the “fault” line, representing unresolved surface complex-
ity (Fig. 6).

These results demonstrate that even slight deviations, such
as a rotation of just a few degrees or adding a low-amplitude
sine wave, are sufficient to introduce a measurable corner d
where none initially existed. We interpret d as a characteristic
length scale that reflects the distance between the modeled
fault and the true underlying geometry. For example, the
magnitude of d scales with the amplitude of the imposed sine
wave, as shown in Figure 6, and we observe that d ≈ σ � tan δ
in which σ is the standard deviation of the normal distribu-
tion along the synthetic fault length, and δ is the dip misfit.
These synthetic examples suggest that d captures the effect of
unmodeled complexity or geometric misfit and may be used
as a diagnostic measure of the relative accuracy of the mod-
eled fault (Fig. 7).

In some cases, we find anomalously low values of the power
law exponent γ, with values <0.8 (Powers and Jordan, 2010;
Rodriguez Padilla, Oskin, et al., 2022; Rodriguez Padilla and
Oskin, 2023) (Fig. 7). Such low γ values indicate a more gradual
decrease in seismicity density with distance from the fault,
implying a broader spatial distribution of earthquakes than
typically observed for well-defined faults. We interpret these
low γ values as evidence that the seismicity is diffusely distrib-
uted around the modeled fault rather than tightly localized
along a discrete structure. This suggests that in some regions,
a single fault surface may not fully capture the true underlying
fault structure. Consequently, low γ values serve as an addi-
tional metric for evaluating whether a modeled fault surface
is a meaningful representation of the observed seismicity.

Machine learning surface fit parameters. A comple-
mentary approach to interpreting the modeled faults is to
examine the SVR fit parameters, which provide additional
insight into the structural characteristics of the modeled

surfaces, as discussed in the Surface fitting section. The SVR
parameters C and ϵ describe the nonplanarity of the surface
and the spatial distribution of seismicity, respectively.

We find that low C values, indicating nearly planar surfaces,
sometimes coincide with regions where modeled surface is fit
to diffuse seismicity clouds (Fig. 8). In such cases, the low C
values suggest that incorporating additional curvature does not
improve the SVR fit. This may imply that either the seismicity
is uniformly distributed around a genuinely planar fault or that
the spatial trends of seismicity do not provide meaningful
structural constraints.

The distribution of C values appears bimodal, and we use
Gaussian mixture modeling to determine a separation thresh-
old as C = 0.35 between the two distributions (see Figure S6). In
our test cases, model results from the low C population gen-
erally correspond to regions with diffuse seismicity. However,
before using the C value as a quality indicator, the expected
fault geometry should be considered. In this study, we have
prior knowledge that the fault geometries are nonplanar
(Plesch et al., 2020; Aagaard and Hirakawa, 2021). In contrast,
some studies, particularly in regions with induced earthquakes,
feature nearly planar features, making the C value less inform-
ative as a quality indicator (Skoumal et al., 2019; Cochran et al.,
2020; Park et al., 2022).

In addition, we find that the SVR parameter ϵ is moderately
correlated with d from equation (4) with a correlation coeffi-
cient of R2 � 0:61 (Fig. S7). This is unsurprising because both
metrics provide information about the distribution of near-
fault seismicity. Although ϵ lacks a clear physical basis as a
quality indicator, its correlation with d suggests that it offers
complementary information.

Synthesis: A multimetric approach to fault model
evaluation. No single metric fully captures the modeled fault
surface uncertainty, but by integrating multiple measures, d, γ, C,
ϵ , and MRE, model reliability may be cautiously interpreted.
Whereas the goodness-of-fit to the inverse power law distribu-
tion (MRE) highlights faults that exhibit expected seismicity
trends, deviations, particularly in γ, suggest cases in which a sin-
gle surface may not fully represent the fault system. In cases in
which hypocentral location uncertainty is low, the corner param-
eter d captures unmodeled fault complexity, with higher values
indicating either systematic misfits or genuine small-scale struc-
tural variations. Similarly, the SVR parameter C helps distinguish
between well-constrained and poorly constrained fault surfaces,
in which low values often coincide with diffuse seismicity clouds,
potentially indicating a lack of clear structural trends. By consid-
ering these parameters together, we can develop a more compre-
hensive perspective on when and where fault surfaces can be
confidently interpreted and where model-based structural inter-
pretations should be treated with caution. This framework pro-
vides a systematic way of interpreting fault models and highlights
anomalous areas that may justify further investigation.
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Recommendations for implementation
It is important to note that several key parameters influence the
outcome of the algorithm. For example, we found that setting
the minimum cluster size to 30–40 events allows for the gener-
ation of longer faults. Using large minimum cluster sizes either
omits small dense clusters or lumps them together and reduces
the resolution. Conversely, using minimum cluster sizes that are
too small often produces unstable results because cluster orien-
tation calculations become uncertain with few data points. In
some rare cases, clustering may produce two clusters, with
one containing a large portion of events and another cluster with
few events. This issue can be resolved by reclustering the large
cluster and breaking it down into smaller clusters.

The merging thresholds also impact the results. In these
examples, we use a threshold value for M 0.75 from equa-
tion (3), which produces results that agree with previous mod-
els (Figs. 3 and 4). Increasing the merging threshold to higher
values reduces the likelihood of merging. Another important
parameter is the number of nearest neighbors used for

comparing directions and orientations. As may be expected,
increasing the number of neighbors may result in merging over
large distances, which typically increases fault continuity.

We also define ranges of the two parameters C and ϵ that
control the SVR fit surface. Optimal values for these parameters
are selected using cross-validation with a randomized search over

Figure 7. Map view display of the output of power law fit
parameters d (a,d), γ (b,e), and the mean relative error (MRE) of
the maximum-likelihood estimated (MLE) (c,f) fit to equation (4),
for the two example datasets. The markers indicate the location
of the earthquake cluster centroids used to generate the fault
surfaces, the fill color indicates the parameter value, and the
marker edge color indicates the merged clusters fault ID used to
generate the modeled fault. The color map for the markers
ranges from yellow to purple, where the yellower colors indicate
potentially problematic fault surfaces. (a–c) Results for the San
Juan Bautista region of California. (d–f) The parameter values for
the 2019 Ridgecrest, California, earthquake sequence. The color
version of this figure is available only in the electronic edition.
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Figure 8. Map view display of the parameter outputs: C, that
describes the surface nonplanarity (a,c) and ϵ (b,d) for the two
example datasets. The markers indicate the location of the
earthquake cluster centroids used to generate the fault surfaces,
the fill color indicates the parameter value, and the marker edge
color indicates the merged cluster’s fault ID that was used to

generate the modeled fault using the method presented in the
text. (a,b) Results for the San Juan Bautista region of California.
(c,d) The parameter values for the 2019 Ridgecrest, California,
earthquake sequence. The color version of this figure is available
only in the electronic edition.
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a uniform distribution for both parameters. The tolerance zone ϵ
around the fitted surface, where errors are not penalized, accom-
modates location errors and microseismicity that occurs within
the fault damage zone. Because the length scale of absolute hypo-
central location uncertainties (Fig. S1) and damage zone dimen-
sions are generally on the order of hundreds of meters, we set ϵ to
range from 1 to 500 m; this may be adjusted for other use cases.
For example, larger permissible ϵ may be required in regions with
sparse or asymmetric seismic station coverage that yield different
uncertainty ellipsoids. Conversely, smaller values might be
appropriate for very precise near source studies. The parameter
C controls the model’s complexity and tolerance for errors when
larger values correspond to a greater degree of nonplanarity (see
Fig. S8). In our tests, we find a range of 1–100 for C balances
model complexity and smoothness, with 1 yielding near-planar
outputs and 100 allowing for reasonable surface detail. Larger C
values can be applied as needed depending on expected fault
geometry and data intricacies.

The method presented in this study offers a semiautomated
and uniform approach to 3D fault modeling. This uniform
approach offers scalability and consistency across different
regions. Our results may provide complementary, alternative,
or additional information to expertly interpreted fault model
studies. We suggest that the method presented here may be a
good starting point for 3D fault mapping and that a hybrid
approach that includes some additional quality controls and
user interpretation is likely best. In addition, the method
can be modified based on the desired use cases and informa-
tion available, such as using surface traces information to shift
fault surfaces in space or incorporating focal mechanism infor-
mation into the clustering step.

Conclusion
The SURF algorithm presented in this study provides a novel,
low-user-input approach for constructing 3D fault geometries
from seismicity patterns. By integrating density-based cluster-
ing with spatially constrained cluster merging, this workflow
effectively models continuous fault surfaces, crossing faults,
and subparallel fault structures. A key advantage of this
approach is that it fits fault surfaces to the data without impos-
ing a priori assumptions about their shape. To objectively
assess model reliability, we evaluate the spatial distribution
of seismicity around the modeled surfaces, ensuring alignment
with established fault zone characteristics.

When applied to the SAF–CF junction and the 2019
Ridgecrest earthquake sequence, the SURF algorithm produces
fault geometries that closely match previously published mod-
els. This agreement highlights its effectiveness in delineating
complex fault structures using only earthquake catalogs. The
simplicity and scalability of this workflow make it a promising
tool for further fault modeling applications, offering an effi-
cient, data-driven alternative for understanding subsurface
fault structures and improving seismic hazard assessments.

Although the method performs well in the case studies pre-
sented, its applicability to regions with sparser seismicity or more
diffuse fault structures warrants further investigation. Future
improvements could incorporate additional geophysical con-
straints, such as geodetic data or geological mapping, to enhance
model accuracy. In addition, refining clustering and merging cri-
teria may improve fault delineation in complex settings, particu-
larly where fault intersections and diffuse seismicity clouds are
present. Beyond fault modeling, this workflow could aid in real-
time seismic monitoring efforts by providing rapid estimates of
fault geometry following significant earthquake sequences.

Data and Resources
The SURF software Alongi and Skoumal (2025) is publically available.
Python (https://www.python.org), the NumPy package (https://numpy.
org), the Pandas package (https://pandas.pydata.org), the SciPy package
(https://scipy.org), the PyVista package (https://docs.pyvista.org), the
pyproj package (https://pyproj4.github.io/pyproj), the scikit-learn pack-
age (https://scikit-learn.org), and the Networkx package (https://
networkx.org) were used. These websites were last accessed in March
2025. The northern California double-difference earthquake catalogs for
the Bay Area were obtained from Lamont–Doherty Earth Observatory,
Columbia University California Data Center, https://nocaldd.ldeo.
columbia.edu/catalog (last accessed December 2024). Northern
California Earthquake Data Center, NCSS catalog for this study were
accessed through the Northern California Earthquake Data Center
(NCEDC), doi: 10.7932/NCEDC (last accessed December 2024).
Ridgecrest catalog was obtained from the U.S. Geological Survey (USGS)
data release that may be accessed at doi: 10.5066/P9JN6H0N. Mapped
fault traces used in figures were obtained from the Quaternary Fault and
Fold Database (https://www.usgs.gov/programs/earthquake-hazards/
faults). See the supplemental material for additional figures and anima-
tions that support main article.
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